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Abstract

Pregnant women are exposed to numerous environmental chemicals, but there is limited 

understanding of chemical mixture exposure profiles and predictors. In a prospective 

cohort of 389 pregnant women from Cincinnati, OH, we used biomarkers to estimate 

exposure to 41 phenols, phthalates, metals, organophosphate/pyrethroid/organochlorine pesticides, 
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polychlorinated biphenyls, polybrominated diphenyl ethers, perfluoroalkyl substances, and 

environmental tobacco smoke. Using pairwise correlations, k-means clustering, and principal 

component analysis (PCA), we identified several profiles of chemical exposure. Chemicals 

within structurally, commercially, or industrially related chemical classes (e.g., phthalates) were 

moderate to strongly correlated compared to unrelated chemicals (e.g., pyrethroid pesticides and 

environmental tobacco smoke). Using k-means clustering and PCA, we identified 3 clusters of 

women (N = 106, 158, and 125) and 6 PC scores, respectively, that characterized profiles of 

cumulative chemical exposure. The first two PC scores significantly varied by cluster, indicating 

that some of these profiles could be identified using both methods. Cluster membership and PCA 

scores were associated with race, marital status, consumption of fresh fruits and vegetables, and 

parity. Future work could use clusters and PCA scores to characterize environmental chemical 

mixture exposures in other cohorts of pregnant women and predict potential health effects of 

environmental chemical mixture exposure.

INTRODUCTION

Exposure to some environmental chemicals, particularly during the sensitive gestational 

period, may be neurotoxic, immunotoxic, carcinogenic, and obesogenic to children.1–5 The 

developing fetus may be more susceptible to environmental chemical exposures during this 

period of rapid growth and development because they cannot yet efficiently metabolize 

and excrete toxicants.6–8 Biomonitoring studies indicate ubiquitous exposure to numerous 

chemicals among pregnant women in the United States.9 Importantly, a number of chemicals 

found in maternal urine and blood readily cross the placenta and are routinely present in the 

fetus or amniotic fluid.10–12

Humans are simultaneously exposed to a mixture of chemicals from contaminated air, 

food, drinking water, dust, and consumer products.9,13 Pesticides, perfluoroalkyl substances 

(PFAS), and phthalates are just a few classes of chemicals detected regularly in household 

dust, drinking water, air, food packaging, home furnishings, personal care, and consumer 

products.14–19 To date, most research on gestational chemical exposures has focused 

primarily on the health effects of individual chemicals or classes of chemicals, leaving 

us with incomplete information on the potential cumulative or interactive effects of these 

exposures.20 Moreover, there are little data about the profiles and determinants of chemical 

mixtures routinely found in pregnant women. Two prior studies among pregnant women in 

Canada and Spain found that structurally, commercially, or industrially related chemicals 

were more strongly correlated with each other than unrelated chemicals.21,22 However, we 

are not aware of any studies examining the profiles and predictors of chemical mixtures 

among pregnant women in the United States.

Characterizing the profiles of gestational exposure to chemical mixtures can help us identify 

combinations of chemical exposures that may be related to children’s health.7,23 Therefore, 

we aimed to understand the relationships between 41 environmental chemical concentrations 

using two different dimension reduction techniques with the goal of developing new metrics 

to characterize exposure to mixtures of environmental chemicals in 389 pregnant women 

from Cincinnati, OH. Moreover, we identified determinants of these profiles in order 
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to better understand sociodemographic, behavioral, lifestyle, and perinatal predictors of 

exposure and provide more comprehensive information for effective interventions.

METHODS

Study Participants.

We used data from the Health Outcomes and Measures of the Environment (HOME) 

Study, a prospective pregnancy and birth cohort in the United States. Participant eligibility, 

recruitment, and follow-up have been described in detail elsewhere.24 Briefly, we recruited 

pregnant women from Cincinnati, Ohio area prenatal clinics from March 2003 through 

January 2006. We enrolled women who were aged 18 years or older, 16 ± 3 weeks of 

gestation, living in a home-built before 1978, not on medications for thyroid disorders or 

seizures, planning to continue prenatal care and deliver at the collaborating clinics and 

hospitals, planning to live in the Cincinnati, OH area for the next year, fluent in English, and 

had no diagnosis of diabetes, bipolar disorder, schizophrenia, HIV infection, or cancer that 

resulted in radiation treatment or chemotherapy. Of the 1263 eligible women, 468 women 

enrolled in our study (37%), 67 dropped out before delivery, and there were 3 stillbirths 

and 9 sets of twins. The remaining 389 mother–child pairs delivered a live born singleton 

infant. For these analyses, we included all pregnant women who had at least one chemical 

concentration measured in urine or blood at either the 16 or 26 week clinic visit.

The institutional review boards (IRB) of Cincinnati Children’s Hospital Medical Center 

(CCHMC) and the participating delivery hospitals approved this study protocol. The Centers 

for Disease Control and Prevention (CDC) and Brown University deferred to CCHMC IRB 

as the IRB of record. Women provided written informed consent after all the study protocols 

were explained to the participants.

Chemical Exposures.

We assessed exposure to >100 environmental chemicals during pregnancy using chemical 

concentrations measured in urine, serum, or blood.24 The broad classes of chemicals 

included phenols, phthalates, metals, pesticides, polychlorinated biphenyls (PCBs), 

polybrominated diphenyl ethers (PBDEs), PFAS, and cotinine. Mothers provided up to 

two urine samples at 16 and 26 weeks of gestation. At these visits, and within 48 h of 

delivery, we collected maternal blood samples via venipuncture and subsequently isolated 

serum from whole blood. All urine samples were stored at −20 °C, and blood and serum 

samples were stored at −80 °C, until they were shipped on dry ice to the CDC for analysis. 

For this analysis, we focused on 41 chemicals (or their metabolites) measured in HOME 

Study participants that are either known or suspected to increase the risk of adverse health 

outcomes in children (Table 1).

Using solid phase extraction coupled with high-performance liquid chromatography isotope 

dilution-tandem mass spectrometry, we measured the total (free plus conjugated) urinary 

concentrations of methyl-, propyl and butyl-parabens, bisphenol A (BPA), triclosan, 

mono-n-butyl-phthalate (MBP), monobenzyl phthalate (MBzP), mono(3-carboxypropyl) 

phthalate (MCPP), monoethyl phthalate (MEP), monoisobutyl phthalate (MiBP), four di-2-
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ethylhexyl phthalate (DEHP) metabolites (mono-2-ethylhexyl phthalate [MEHP], mono-2-

ethyl-5-hydroxyhexyl phthalate [MEHHP], mono-2-ethyl-5-oxohexyl phthalate [MEOHP], 

and mono-2-ethyl-5-carboxypentyl phthalate [MECPP]), and 3-phenoxybenzoic acid (a 

metabolite of pyrethroid insecticides).25–27 We measured urinary concentrations of six 

dialkyl phosphates (metabolites of organophosphate insecticides) using gas chromatography 

isotope dilution-tandem mass spectrometry.28

Urinary arsenic (As) and cadmium (Cd) concentrations were measured by inductively 

coupled plasma-mass spectrometry.29,30 In our analyses, we examined the summed 

concentrations of As III, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and 

As V. To control for individual variation in urine dilution for the above listed nonpersistent 

chemicals and metals, chemical concentrations were standardized according to urinary 

creatinine concentrations (units of μg/g creatinine), measured with a kinetic Jaffe reaction.

Blood lead (Pb) and total mercury (Hg) were quantified using inductively coupled plasma 

mass spectrometry.31,32 We measured serum concentrations of 32 PCBs, 9 organochlorine 

(OC) pesticides, and 9 PBDEs using previously described gas chromatography-tandem mass 

spectroscopy methods.33,34 We lipid-standardized serum concentrations of OC pesticides, 

PCBs, and PBDEs, using serum measurements of triglycerides and total cholesterol 

determined via standard enzymatic methods.35 Finally, we quantified serum concentrations 

of cotinine, a metabolite of nicotine and biomarker of tobacco smoke exposure, and of 10 

PFAS using high-performance liquid chromatography-tandem mass spectroscopy.36,37

Because many individual chemical concentrations within a given class are highly correlated 

due to shared exposure sources (e.g., PCBs) or common metabolic pathways (e.g., 

metabolites of DEHP). Thus, we summed the concentrations of specific chemicals or 

used individual chemicals within a class as an indicator of exposure to parabens, 

DEHP, organophosphate pesticides, PCBs, and PBDEs. We calculated the molar sum 

of three parabens (∑parabens: methyl-, propyl, and butyl parabens), four metabolites of 

DEHP (∑DEHP), and six dialkyl phosphate metabolites (∑DAP: diethyldithiophosphate, 

diethylphosphate, diethylthiophosphate, dimethyldithio-phosphate, dimethylphosphate, and 

dimethylthiophosphate) of organophosphate pesticides. We also summed the concentrations 

of the four most commonly occurring PCBs (∑4PCBs: PCB-138/158, PCB-118, PCB-153, 

and PCB-180). To assess PBDE exposure, we used serum BDE-47 concentrations because 

it is the most abundant PBDE congener in our study and concentrations were available for 

most participants (94%). Additionally, BDE-47 was moderate to strongly correlated with 

other PBDEs (PBDE-28: r = 0.9, PBDE-85: r = 0.9, PBDE-99: r = 0.9, PBDE-100: r = 0.9, 

PBDE-153: r = 0.5, PBDE-154: r = 0.8).

Because chemical concentrations were not normally distributed, we log10-transformed all 

chemical concentrations to satisfy normality assumptions of our models. Log10-transformed 

concentrations were averaged when a woman provided a sample at both the 16 and 26 week 

visits. All values below the limit of detection (LOD) were assigned a value of LOD/√2.38
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Predictors of Chemical Exposure Mixtures.

HOME Study research staff administered standardized surveys to participants to ascertain 

maternal sociodemographic, behavioral, and lifestyle factors at the baseline study visit 

during the second trimester. Sociodemographic variables included maternal race, age, 

education, marital status, and household income. Behavioral and lifestyle factors included 

the frequency of fresh fruit, vegetable, and fish consumption during pregnancy. Research 

staff abstracted perinatal information, including participant’s parity and body mass index 

(BMI), from medical records. Maternal BMI, age, and household income were treated 

as continuous variables, and the remaining variables were characterized as categorical 

variables.

Statistical Analysis.

In order to account for missing chemical concentrations in the data, we imputed missing 

values among women who had at least one measured chemical concentration during 

pregnancy using the Markov Chain Monte Carlo (MCMC) method.39 The imputations 

were done using all available chemical concentrations as well as the sociodemographic, 

behavioral, lifestyle, and perinatal variables listed above. We generated 20 imputed data sets, 

averaged the imputed values, and used these values for all further analysis.

We conducted three sets of statistical analyses to understand the profiles of exposure to 

chemical mixtures among pregnant women. We began with simpler methods to understand 

the relationship between individual chemicals before moving onto more complex dimension 

reduction techniques. To account for varying scales of individual chemicals, we converted 

the log10-transformed chemical concentrations to z-scores when using more complex 

techniques.

We first calculated pairwise Pearson’s correlation coefficients between individual chemical 

concentrations to understand the bivariate relations among chemical concentrations. We also 

examined the central tendency and range of correlation coefficients overall, within, and 

between families of chemicals.

Next, we used k-means clustering to classify pregnant women into k clusters based on their 

chemical concentrations.40 The k-means algorithm uses Euclidian geometry to compute a 

cluster centroid and assign observations to a cluster such that the summed distances between 

the observations and cluster centroids are minimized. The number of clusters is assigned a 
priori based on subject matter knowledge. Because we did not have prior knowledge of the 

number of unique clusters in our data set, we explored solutions with 2, 3, and 4 clusters to 

ensure that there were a reasonable number of women within each cluster for interpretability. 

Among the 2, 3, and 4 cluster solutions, we selected the optimal number of clusters using 

the cubic cluster criterion (CCC), a test statistic where lower values indicate more distinct 

clustering of the data.41 The 3-cluster solution had the lowest CCC value. We also calculated 

the geometric mean (GM) chemical concentrations among women within each cluster.

Third, we performed a principal components analysis. We began by conducting an 

exploratory PCA with no constraints on the total number of principal components. We 

then restricted our PCA to 6 principal components by examining Scree plots and selecting 
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a number of principal components that explained ≥50% of the variance in our data. We 

compared our PCA results to the k-means clustering results by calculating the mean PC 

scores for each cluster and using linear regression to test whether PC scores varied by 

cluster.

Finally, we used multinomial logistic regression and multivariable linear regression to 

identify predictors of cluster membership and principal component (PC) scores for each 

of the six PCs, respectively. PC scores were calculated by multiplying the original chemical 

concentration z-scores by that chemical’s PCA loading value for each principal component. 

We included maternal race, age, education, marital status, income, BMI, parity, fresh fruit, 

vegetable, and fish consumption as predictors in all of these models.

We used SAS version 9.4 (SAS Institute, Inc. Cary, NC) and R version 3.2.3 (R Core Team, 

Vienna, Austria) for all statistical analysis.

RESULTS

Among 389 women who delivered a live singleton newborn in the HOME Study, all had 

complete data for phenols, phthalates, and Pb (Table 1, Table S1). A total of 231 women had 

complete data for all chemical concentrations with the largest number of women missing 

data for oxychlordane (N = 87) and hexachlorobenzene (N = 79).

Overall, we observed that chemical concentrations within a chemical class were more 

correlated with each other than with chemical concentrations from another class (Figure 

1). The mean Pearson pairwise correlation (r) for all chemical concentrations was 0.08 

(Median: 0.08, Range: −0.44, 0.90). Among all chemical concentrations, 23 (6%) pairwise 

correlations were r > 0.40; these pairs tended to be of the same chemical class (87%). 

For example, correlations among the organochlorine pesticides ranged from 0.36 to 

0.90, with the strongest correlation between oxychlordane and transnonachlor (r = 0.90). 

Correlations among PFAS ranged from 0.37 to 0.64; the strongest correlation was observed 

between perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonate (PFHxS) (r = 0.64) 

(Figure 1). Additionally, there were some weaker positive correlations between chemical 

concentrations from different classes. Pb and cotinine (r = 0.33), Pb and BDE-47 (r = 

0.12), ∑parabens and MEP (r = 0.37), and BDE-47 and cotinine (r = 0.30) were weakly 

to moderately correlated with each other. Generally, chemicals from different classes were 

not correlated (e.g., DEHP and Hg r = −0.03 and PCB and MBP r = 0.02). There were 

some moderate negative correlations of note, with the strongest between cotinine and 

benzophenone-3 (r = −0.44) and cotinine and triclosan (r = −0.31).

Using k-means clustering, we identified three distinct clusters of women’s chemical 

concentrations (Figure 2, Table S2, Table S3). Women in cluster 1 (N = 106) had the 

highest GM of 20 chemical concentrations, while women in cluster 2 (N = 158) had the 

highest GM concentrations of 2 chemicals and intermediary concentrations of 23 chemicals. 

Women in cluster 3 (N = 125) had the highest GM concentrations of 6 chemicals and 

lowest GM concentrations of 17 chemicals. Women in cluster 1 had profiles of chemical 

concentrations consistent with higher exposure to most phenols, three phthalates, several 
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metals, organophosphate and organochlorine pesticides, PCBs, and several PFAS. The 

profile of chemical concentrations among women in cluster 2 was indicative of higher 

exposure to two phthalates and intermediate exposure to phenols, metals, organophosphate 

and organochlorine pesticides, PCBs, several PFAS, and tobacco smoke. Women in cluster 

3 had profiles of chemical concentrations consistent with higher exposure to parabens, one 

phthalate (monoethyl phthalate), lead, BDE-47, one PFAS, and tobacco smoke exposure, 

and intermediate exposure to several phthalates and one PFAS.

Using PCA, we found that 6, 13, and 21 principal components explained at least 50, 80, and 

95% of the variance in chemical concentrations, respectively. Each additional component 

beyond six explained less than 5% of the total variance in the data. We constrained the PCA 

to six principal components to explain the majority of the variation in the data and reduce 

the dimensionality of the data. Then, we compared the variance that each PC explained 

in each chemical concentration and characterized each PC by the chemicals that had the 

highest amount of variance accounted for by that PC (Figure 3, Table S4).

PC1 explained most of the variance in oxychlordane, trans-nonachlor, benzophenone-3, 

triclosan, As, ∑DAPs, and ∑4PCBs (Table S5). Thus, we characterized PC1 as being 

indicative of exposure to organochlorine compounds, phenols, and As. In addition, PC1 

explained at least some of the variance in the majority of chemical concentrations. PC2 

explained most of the variance in MBP, MBzP, MCPP, MiBP, DEHP, PFOS, PFNA, PFOA, 

PFHxS, and 3-phenoxybenzoic acid and we characterized this component as being indicative 

of phthalate, PFAS, and pyrethroid pesticide exposure. We characterized PC3 as an indicator 

of exposure to lead, OC pesticides, HCB, and environmental tobacco smoke. PC4 did not 

explain the highest variance for any of the chemicals, but all phthalates had loading factors 

greater than 0.20 and PC4 explained some variance in most chemical concentrations. PC5 

explained most of the variance of the parabens, MEP, and Hg. Finally, PC6 explained the 

highest variance for BPA, Cd, and PBDE-47.

In some cases, we observed higher mean PC scores among women in clusters where the 

specific PC score explained variation in chemical concentrations that were also higher in 

concentration in that cluster (Table 2). Specifically, women in cluster 1 had higher mean PC 

scores for three of the six principal components than women in clusters 2 or 3, which was 

consistent with their pattern of having the highest GM concentrations of most chemicals. In 

addition, 4 of the 6 mean PC scores were higher among women in cluster 2 than women in 

cluster 3, consistent with their GM chemical concentrations generally being between those 

of women in clusters 1 and 3. Women in cluster 3 had the highest average PC2 scores; both 

cluster 3 and PC2 were characterized by higher than average concentrations of MBzP, MiBP, 

and 3-phenoxybenzoic acid.

Using multinomial logistic regression and after adjustment for sociodemographic, 

behavioral, lifestyle, and perinatal factors, both race and consumption of fruits and 

vegetables were associated with membership in cluster 1, which was characterized by higher 

concentrations of most phenols, three phthalates, several metals, organophosphate and 

organochlorine pesticides, PCBs, and several PFAS. Specifically, black women were less 

than half as likely (OR: 0.42; 95% CI: 0.18, 0.99) to be in cluster 1 than white women (Table 
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3, Table S6). We also found that women who reported consuming fresh fruits and vegetables 

daily were more than two-times as likely to belong to cluster 1 (OR: 2.33; 95% CI: 1.33, 

4.09) than women who did not consume fresh fruit and vegetables daily. Compared to 

married women, women who were not married were about half as likely (OR: 0.52; 95% CI: 

0.23, 1.19) to be in cluster 2, which was characterized by the highest urinary concentrations 

of MBZP and MiBP among the three clusters and intermediary concentrations of most other 

biomarker concentrations. The other sociodemographic, behavioral, lifestyle, and perinatal 

variables were relatively weak predictors of cluster membership (i.e., 0.5 < ORs < 1.5).

Using multivariable linear regression, and after adjustment for other sociodemographic, 

behavioral, lifestyle, and perinatal factors, we observed that black women had lower PC1 

scores than white women (β = −0.78, 95% CI: −1.22, −0.34) (Table 4). This indicates 

that compared to white women, black women in our study had lower concentrations of 

biomarkers that were most strongly correlated with PC1. Additionally, maternal BMI (β per 

SD increase in BMI = −0.48, 95% CI: −0.64, −0.33), parity (nulliparous vs multiparous β 
= 1.08, 95% CI: 0.77, 1.39), and fresh fruits and vegetables consumption (consume daily vs 

less than daily β = 0.24, 95% CI: 0.07, 0.54) were associated with PC1 scores. PC2 scores 

were inversely associated with women’s age at delivery (β = −0.78, 95% CI: −1.22, −0.34). 

Being married vs unmarried (β = 0.75, 95% CI: 0.31, 1.19) and each SD increase in age 

at delivery (β = 0.69, 95% CI: 0.52, 0.87) were associated with higher PC3 scores. Finally, 

consuming fresh fruits and vegetables daily was associated with PC6 scores (β = −0.50, 95% 

CI: −0.73, −0.27).

DISCUSSION

We investigated the profiles and predictors of exposure to chemical mixtures among 

pregnant women from Cincinnati, Ohio. We found that chemical concentrations within 

structurally, commercially, or industrially related classes were more strongly correlated than 

concentrations of chemicals in different classes. We identified several profiles of chemical 

exposure using both k-means clustering and PCA. Specifically, we observed three clusters 

of pregnant women with distinct chemical concentration profiles. In addition, we were able 

to explain the majority the variance in chemical concentrations with 6 PCs. We found 

that scores from the first two PCs significantly varied by cluster. Some sociodemographic, 

behavioral, lifestyle, and perinatal variables predicted cluster membership and PC scores.

While gestation is recognized as an especially vulnerable period of development, we are 

aware of only two previous studies that characterized the profiles of gestational chemical 

mixture exposure. In a cohort of 728 pregnant women from the INMA Sabadell cohort in 

Spain, Robinson et al. examined pairwise correlations between 43 environmental chemical 

biomarkers. Similar to the results of our analysis, they reported that biomarkers of chemicals 

with similar structures or commercial/industrial uses were more strongly correlated than 

unrelated chemicals. In their study, 1 or 2 individual principal components explained the 

majority of the variance for specific classes of chemicals.22 Another study conducted among 

1744 pregnant women in the pan-Canadian MIREC cohort also found similar patterns of 

correlations among 28 environmental chemicals.21 The pattern of findings from their PCA 

was similar to our own and individual PCs explained most of the variance for chemical 
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concentrations in the same class. For example, the first principal component explained the 

most of the variance of organochlorine persistent pesticide concentrations and the second 

principal component explained most of the variance in the phthalates.21

We used two different dimension reduction techniques to identify profiles of chemical 

exposure in an effort to develop new metrics to characterize environmental chemical mixture 

exposures among pregnant women. Some aspects of the profiles identified by k-means 

clustering and PCA were similar. For example, PC1 and PC2 closely follow patterns of 

exposure identified using k-means clustering. Other principal components did not follow 

cluster profiles as closely. As noted previously, while many chemicals concentrations were 

highest in cluster 1, medium in cluster 2, and lowest in cluster 3, some chemicals deviated 

from this pattern. For instance, lead, BDE-47, and cotinine concentrations were highest in 

cluster 3, medium in cluster 2, and lowest in cluster 1. In addition, the PCA identified this 

difference as well, with PC3 having higher loadings for these three chemicals than PC1, 

which tended to reflect the chemicals with the highest concentration in cluster 1.

The pattern of correlations we observed between chemical concentrations could be due to 

their combined use in some commercial and industrial products or historical distribution into 

the environment. For instance, some chemicals are used in the same products (e.g., parabens 

and some phthalates in personal care products), while other chemicals were previously 

sold as commercial mixtures and widely distributed in the environment (e.g., PCBs).42,43 

We speculate that the degree of correlation between unrelated chemicals could be due to 

product formulations, sociodemographic factors, and personal behaviors. However, we were 

not able to confirm this because we did not have information about the formulation or use of 

specific products or detailed surveys of behavior and diet. Future studies would benefit from 

examining product use and behavioral factors as predictors of chemical mixture exposure.

These results suggest that previously identified factors associated with individual chemical 

exposures are also associated with exposure to chemical mixtures. For instance, similar 

to previous studies showing that whites have higher urinary triclosan concentrations than 

blacks,44 white women in this cohort had higher PC1 scores, which explained most of 

the variance for urinary triclosan concentrations in our analysis. Furthermore, fruit and 

vegetable intake was predictive of high PC6 scores, which also explained the majority 

of the variance in DAP concentrations in the PCA. Additionally, parity was predictive 

of PC1 scores, which explained most of the variance in OC pesticides and is consistent 

with previous work showing that nulliparous women have higher serum OC pesticide 

concentrations than multiparous women.45 By identifying factors associated with multiple 

chemical exposures, future epidemiological studies can select appropriate confounders 

when examining associations between mixtures and human health. Moreover, public health 

interventions could be targeted to groups most at risk of chemical mixture exposure.

Overall, the profiles of chemical exposures among these pregnant women were qualitatively 

similar to both k-means clustering and PCA, indicating that our results were not sensitive 

to the models we chose. However, the two methods produce metrics of chemical mixture 

exposure with unique strengths and limitations. The clusters allow for easily interpretable 

profiles of cumulative environmental chemical exposure that could be used to predict health 
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outcomes (e.g., women in cluster 2 were more likely to disease than women in cluster 1). 

However, it is not possible to examine the dose–response of the cluster with respect to 

disease outcome. Additionally, k-means calculates the centroid of each cluster using the 

average of all data points in the cluster. Therefore, outliers can bias the k-means results if the 

sample size is small and a single data point drives a cluster’s centroid value.46

PC regression can be used to investigate the risk of disease with increasing levels of each 

individual PC, which reflect cumulative exposure to a weighted combination of chemicals. 

By design individual PCs are not correlated with each other, reducing the potential for 

multicollinearity. However, interpreting PC scores can be challenging since the scores reflect 

a weighted sum of chemical concentrations. Future studies using the HOME Study could use 

these specific clusters or PC scores as categorical or continuous measures of exposure, 

respectively, to investigate the impact of cumulative chemical exposures on a variety 

of childhood outcomes such as birth weight, body mass index, or neurodevelopmental 

disorders. Such results would need to be cautiously interpreted and replicated in other 

cohorts because the patterns of chemical exposure used to derive clusters or PC scores may 

be unique to each study.

Our study has some additional limitations. First, there is the potential for misclassification 

of some chemical exposures. This misclassification is likely greater for the nonpersistent 

chemicals than persistent chemicals because of their shorter biological half-lives and the 

episodic nature of exposure to these nonpersistent chemicals. While we attempted to reduce 

exposure misclassification by averaging up to two biomarker concentrations (>95% of 

women), it is possible that non-differential exposure misclassification reduced our precision 

to accurately distinguish exposure profiles to some chemicals in the mixture. Second, 

our study participants were enrolled from a single U.S. city in the early 2000s and may 

not be generalizable to other groups of pregnant women or women in other locations or 

time periods. Reassuringly, concentrations of most chemicals in our study were similar to 

pregnant women in other U.S.-based studies conducted at the same time.9,47–50 Additionally, 

our measures of environmental chemical exposures were collected between 2003 and 

2006; thus, we were unable to account for temporal or geographic variations in exposure. 

Future studies could apply these methods to more recently established birth cohorts in 

other locations to determine if chemical mixture correlation patterns vary temporally or 

geographically. Third, we created summary variables for a number of chemical classes 

or used one chemical as a representative for the whole class (e.g., PCBs and BDE-47); 

however, individual chemicals within these classes may have distinct patterns which may 

influence chemical profiles had they been included. Future studies could use the presented or 

other methods to characterize the patterns of individual PCB or PBDE congener exposures. 

Fourth, extreme chemical concentration values could have influenced the profiles we 

observed with both k-means and PCA; however, this seems unlikely given our relatively 

large sample size and the observation that all chemical concentrations had values within 

4 SD of the mean. Finally, we used a single imputation method to account for missing 

exposure data, which would result in us underestimating the standard error in the regression 

analyses.51
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These data indicate that pregnant women in the U.S. are exposed to mixtures of 

environmental chemicals that can be characterized by distinct clusters and principal 

components. These clusters and principal components were associated with several 

sociodemographic, behavioral, lifestyle, and perinatal factors. Future studies could use these 

chemical mixtures profiles to quantify the potential impact of gestational environmental 

chemical mixture exposures on health outcomes among the HOME Study children.
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ABBREVIATIONS

PCBs polychlorinated biphenyls

PBDEs polybrominated diphenyl ethers

PFAS Perfluoroalkyl substances

CCHMC Cincinnati Children’s Hospital Medical Center

CDC Centers for Disease Control and Prevention

MBP mono-n-butyl-phthalate

MBzP monobenzyl phthalate

MCPP mono(3-carboxypropyl) phthalate

MEP monoethyl phthalate

MiBP monoisobutyl phthalate

DEHP di(2-ethylhexyl) phthalate

MEHP mono-2-ethylhexyl phthalate

MEHHP mono-2-ethyl-5-hydroxyhexyl phthalate

MEOHP mono-2-ethyl-5-oxohexyl phthalate

MECPP mono-2-ethyl-5-carboxypentyl phthalate

As arsenic
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Cd Cadmium

OC organochlorine

DAP dialkyl phosphate metabolites

LOD limit of detection

BMI body mass index

CCC cubic cluster criterion

GM geometric mean

PCA principal component analysis

PC principal component

PFOS perfluorooctanesulfonate

PFHxS perfluorohexanesulfonate

DDE dichlorodiphenyldichloroethylene
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Figure 1. 
Heat map of pairwise correlations between chemical concentrations among pregnant 

women in the HOME Study. Red indicates positive correlations, white represents no 

correlation, and blue indicates negative correlations. The correlation heatmap was created 

using log10-normalized urinary or serum chemical concentrations. All urinary and serum 

chemical concentrations were creatinine and lipid standardized, respectively. The paraben 

summary variable (∑parabens) is the molar sum of methylparaben, propylparaben, 

and butylparaben. The paraben summary variable (∑parabens) is the molar sum of 

methylparaben, propylparaben, and butylparaben. The di(2-ethylhexyl) phthalate summary 

variable (∑DEHP) is the molar sum of its urinary metabolites MEHP, MEHHP, MEOHP, 

and MECPP. The organophosphate pesticides summary variable (∑DAP) is the molar sum of 

DEDTP, DEP, DETP, DMDTP, DMP, and DMTP. The polychlorinated biphenyls summary 

variable (∑4PCBs) is the sum of PCB 138/158, PCB 118, PCB 153, and PCB 180.
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Figure 2. 
Heat map of mean chemical concentration z-scores by cluster membership among 

pregnant women in the HOME Study. Cluster 1, 2, and 3 sample sizes were 106, 

158, and 125, respectively. Red indicates higher than average chemical concentrations, 

white represents average chemical concentrations, and blue indicates lower than average 

chemical concentrations. The paraben summary variable (∑parabens) is the molar sum 

of methylparaben, propylparaben, and butylparaben. The paraben summary variable 

(∑parabens) is the molar sum of methylparaben, propylparaben, and butylparaben. The di(2-

ethylhexyl) phthalate summary variable (∑DEHP) is the molar sum of its urinary metabolites 

MEHP, MEHHP, MEHOP, and MECPP. The organophosphate pesticides summary variable 

(∑DAP) is the molar sum of DEDTP, DEP, DETP, DMDTP, DMP, and DMTP. The 
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polychlorinated biphenyls summary variable (∑4PCBs) is the sum of PCB 138/158, PCB 

118, PCB 153, and PCB 180.
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Figure 3. 
Heat map of loading factors from principal component analysis of chemical concentrations 

among pregnant women in the HOME Study. Red indicates the range of positive loading 

factors and blue indicates the range of negative loading factors. The PCA was constrained 

to 6 principal components. The paraben summary variable (∑parabens) is the molar sum of 

methylparaben, propylparaben, and butylparaben. The arsenic summary variable (∑arsenic) 

is the summed concentration of concentrations of As III, DMA, MMA, and As V. The 

di(2-ethylhexyl) phthalate summary variable (∑DEHP) is the molar sum of the metabolites 

MEHP, MEHHP, MEOHP, and MECPP. The organophosphate pesticides summary variable 

(∑DAP) is the molar sum of DEDTP, DEP, DETP, DMDTP, DMP, and DMTP. The 

polychlorinated biphenyls summary variable (∑4PCBs) is the sum of PCB 138/158, PCB 

118, PCB 153, and PCB 180.
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Table 2.

Mean Principal Component Scores for Women in Each Cluster for the Six Principal Components That 

Explained 50% of the Variation in Chemical Concentrations among Pregnant Women in the HOME Study
a

Principal Component
Mean PC Score Cluster 1, N = 

106
Mean PC Score Cluster 2, N = 

158
Mean PC Score Cluster 3, N = 

125 p-value
b

PC1 0.72 −0.12 −0.46 0.0001

PC2 −0.44 0.00 0.37 <0.0001

PC3 −0.01 −0.02 0.04 0.93

PC4 0.20 −0.05 −0.11 0.23

PC5 −0.01 0.03 −0.03 0.91

PC6 0.01 0.11 −0.15 0.17

a
PC scores were calculated by multiplying the original chemical concentration z-scores by that chemical’s PCA loading factor for each principal 

component.

b
p-values were calculated by comparing mean PC scores using a one-way ANOVA with 2 degrees of freedom.
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Table 3.

Adjusted Odds of Cluster Membership among Pregnant Women According to Sociodemographic, Behavioral, 

and Lifestyle Variables among Pregnant Women in the HOME Study (N = 380)
a

Variable Cluster 1 N Cluster 2 N Cluster 3 N Cluster 1 vs 3 OR (95% CI) Cluster 2 vs 3 OR (95% CI)

Maternal Race

White 72 94 70 ref ref

Black 22 50 46 0.42 (0.18, 0.99) 0.81 (0.39, 1.69)

Other 11 7 8 1.35 (0.49, 3.72) 0.72 (0.24, 2.13)

Marital Status

Married 74 100 73 ref ref

Not Married 31 51 51 0.75 (0.30, 1.84) 0.52 (0.23, 1.19)

Household Income 105 151 124 0.92 (0.63, 1.35) 0.88 (0.62, 1.26)

Maternal Education

Greater than High School 85 108 94 ref ref

High School or less 20 43 30 1.31 (0.57, 3.05) 2.00 (0.97, 4.13)

Maternal Age at Delivery 105 151 124 0.88 (0.61, 1.29) 1.09 (0.79, 1.50)

Maternal Body Mass Index 
Parity

105 151 124 0.94 (0.70, 1.26) 1.05 (0.81, 1.34)

Multiparous 55 88 67 ref ref

Nulliparous 50 63 57 0.83 (0.46, 1.47) 0.89 (0.53, 1.50)

Fish Consumption

Any 91 130 102 ref ref

None 14 21 22 0.76 (0.36, 1.61) 0.85 (0.44, 1.67)

Fruit and Veg Consumption

Less than daily 50 95 84 ref ref

Daily 55 56 40 2.33 (1.33, 4.09) 1.30 (0.77, 2.19)

a
Cluster 1, 2, and 3 sample sizes were 105, 151, and 124.

b
The adjusted analysis includes all sociodemographic, behavioral, lifestyle, and perinatal variables listed in the table in the same model.

c
Odds ratios for maternal age (SD: 5.8 years), household income (SD: $42,238), and maternal BMI (SD: 6.8 kg/m2) have been scaled so that the 

adjusted OR is per standard deviation change in those variables.
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